5.7.0

Roll No.

Total No. of Pages

Total No. of Questions: 09

B.Tech. (AI & DS / AI & ML / Block Chain / CSE / Cyber Security / IOT / CSD / IT / Robotics & Artificial Intelligence / Internet of Things and Cyber Security including Block Chain Technology) (Sem.-3)

DIGITAL ELECTRONICS

Subject Code: BTES301-18

M.Code: 76435

Date of Examination: 24-12-2024

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

 SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.

2. SECTION-B contains FIVE questions carrying FIVE marks each and students

have to attempt any FOUR questions.

3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) Why I's and 2's complements are required? Discuss.
- b) What do you mean truth table? Write down the truth table of Exclusive-OR gate.
- c) Compare combinational circuits with sequential circuits.
- d) Discuss the significance of multiplexer.
- e) List the advantages of QM method.
- f) What is Race around Condition? Discuss.
- g) What do you mean by PROM and EPROM? Discuss.
- h) What are the advantages of Dual slope A/D converter? Discuss.
- i) List the various characteristics of FPGA.
- j) Explain the term resolution w.r.t. converters.

- 2. Explain the working of a SR flip-flop. Also mention its advantages and disadvantages.
- Explain the working of a SR Inp Hope
 What is the need of K-Map? Reduce the following expression to simplest Sum of product form using K-Map.
 F(a,b,c,d) = ∑m(0, 1, 3, 5, 7, 10, 11, 12)
- 4. Prove that NAND and NOR are known as universal gates.
- 5. Draw the logical diagram and explain the working of 4 bit ring counter.
- 6. Discuss the working of weighted type D/A converter in detail by considering a suitable example.

SECTION-C

7. Discuss:

- a) Successive approximation A/D converter
- b) Classification of memory.
- 8. Discuss in detail the design procedure of binary half adder and binary full adder.

9. Explain:

- a) QM method
- b) RAM organization and its comparison with ROM.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(AI&ML/CSE/CSD) (Sem.-3) DIGITAL ELECTRONICS Subject Code: BTES301/18

M.Code: S76435

Date of Examination: 27-01-2025

Time: 3 Hrs.

Max. Marks: 60

SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks INSTRUCTIONS TO CANDIDATES: SECTION-B contains FIVE questions carrying FIVE marks each and students

SECTION-C contains THREE questions carrying TEN marks each and students 2. have to attempt any TWO questions.

SECTION-A

- a. Why digital system is required? Discuss.
- b. Which gate is called an all or nothing gate? Why?
- c. Why are BCD codes required?
- d. Discuss the distributive laws of Boolean algebra.
- e. Why is it required to reduce Boolean expression before realization? Discuss.
- What do you mean by sequential circuits? Explain.
- What is the drawback of a serial adder? For which application are they preferred?
- h. List the drawbacks of JK flip flop.
- Write down the various advantages of PAL.
- List the advantages of R-2R type D/A converter.

- 2. Convert the 1001010110110.10101 binary number to decimal, hexadecimal and octal.
- 3. Use the laws of Boolean algebra (Name the laws used at each step), to reduce the following expression to their simplest form and implement that with NAND gate circuit.

$$F = A \overline{B} + ABD + AB \overline{D} + \overline{A} \overline{C} \overline{D} + \overline{A} B \overline{C}$$

- 4. Explain the working of a SR flip-flop. Also mention its advantages and disadvantages.
- 5. Use a multiplexer having three data select inputs to implement the logic for the function given below

$$F = \Sigma m (0, 1, 2, 3, 4, 10, 11, 14, 15)$$

Also realize the same using 16:1 MUX.

6. Draw the logic diagram and explain the working of deal slope type A/D converted.

SECTION-C

- 7. Explain in detail:
 - (i) Successive approximation A/D converter.
 - (ii) Memories and their classification.
- 8. Reduce the following expression using K map and verify the result using QM method

$$F = \Sigma m (0, 2, 4, 6, 7, 10, 12, 13, 15)$$

- 9. Discuss:
 - (i) Design of 3-bit synchronous counter.
 - (ii) BCD Adder.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(ECE) (Sem.-3) MATHEMATICS-III

Subject Code: BTAM-303-18

M.Code: 76448

Date of Examination:02-01-2025

Time: 3 Hrs.

Max. Marks: 60

SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks INSTRUCTIONS TO CANDIDATES :

SECTION-B contains FIVE questions carrying FIVE marks each and students

SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

Write briefly: 1.

a. State and prove First Shifting Theorem of Laplace Transform.

b. Find the
$$L^{-1} \left(\frac{3}{s^2 + 6s + 13} \right)$$
.

- Write a short note on Gibbs Phenomenon.
- d. State how Fourier Transform and Laplace Transform are related to each other?
- State final value theorem of Z transform.
- f. If the Z transform of a finite-duration discrete-time signal x[n] is X(z), then what is the Z transform of the signal y[n] = x[2n]?
- g. A bag contains 5 red balls, 3 blue balls, and 2 green balls. If one ball is drawn randomly, what is the probability that the ball is either red or blue?
- h. A factory produces light bulbs, and the probability that a randomly selected bulb is defective is 0.02. If 10 bulbs are selected, what is the probability that exactly 2 bulbs are defective?
- i. State the formula for the z-test for comparing a sample mean to a population mean.
- The mean of the binomial distribution is 20 and standard deviation is 4. Determine its distribution.

1 | M-76448

- 2. Apply Convolution Theorem to evaluate inverse Laplace transform of $\frac{s^2}{(s^2+4)(s^2+9)}$.
- 3. Compute the Fourier Transform of $f(t) = e^{-at}$. a > 0.
- 4. State and prove initial value theorem for Z transform.
- 5. Fit a second-degree parabola $y = ax^2 + bx + c$ using the least squares method to the data:

					1
X	0	1	2	3	4
Y	1	2	4	7	11

6. A random variable X assumes the values -3, -2, -1, 0, 1, 2, 3 such that P(X=-3) P(X=-2) = P(X=-1), P(X=1) = P(X=2) = P(X=3), P(X=0) = P(X<0) = P(X>0). Find its distribution function and obtain the probability density function of the random variable Y where $Y=2X^2+3X+4$.

SECTION-C

.7. Solve the partial differential equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, u(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x)$$

using the Laplace Transform.

- 8. a) Use Final Value Theorem for Z transforms to determine the final value of the sequence $x(n) = 3 + 2^n$.
 - b) A class of students took a mathematics exam, and their scores are normally distributed with a mean of 75 and a standard deviation of 10. What score corresponds to the 90th percentile of the distribution? (You can use the fact that for a standard normal distribution, the z-score corresponding to the 90th percentile is approximately 1.28.)
- 9. Perform a *t*-test for the means of two small samples to determine if they are significantly different. Sample 1: $n_1 = 8$, $\overline{X_1} = 10$, $s_1 = 2$ and Sample 2: $n_2 = 10$, $\overline{X_2} = 12$, $s_2 = 3$. Test at the 5% significance level.

Total No. of Pages: 02 Roll No.

Total No. of Questions: 09

B.Tech. (ECE/ETE) (Sem.-3)

MATHEMATICS-III (INTEGRAL TRANSFROMS, PROBABILITY & STATISTICS)

Subject Code: BTAM-303-23

M.Code: 94631

Date of Examination: 04-01-2025

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks

SECTION-B contains FIVE questions carrying FIVE marks each and students

have to attempt any FOUR questions.

SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- a) Write the Laplace Transform of the Dirac-delta function δ (t).
- b) State the second shifting theorem for Laplace Transforms.
- c) Find the first three Fourier coefficients a_0 , a_1 , and b_1 for the function f(x) = 2x on the interval $[-\pi,\pi]$.
- d) Write the expression for the Fourier Transform of a function $f(t) = e^{-t}$.
- e) Find the inverse Laplace Transform of $F(s) = \frac{3}{s^2 + 4}$
- f) What is the initial value theorem for Z transforms? Provide its mathematical expression.
- g) Write the Z-transform of a delayed sequence x [n-k] for k > 0.
- h) The probability that a student passes a statistics exam is 0.8. What is the probability that exactly 3 out of 5 students pass the exam?
- i) What are the mean and variance of a binomial distribution with parameters n and p?

j) For the data set 2, 3, 3, 4, 5, 5, 5, 6, 7, determine the mode.

SECTION-B

- 2. Evaluate the integral $\int_{0}^{\infty} e^{-5t} \sin(3t) dt$ using the properties of the Laplace Transform.
- 3. A function is defined as

$$f(x) = \begin{cases} 2x & for -\pi < x < 0 \\ -2x & for 0 < x < \pi \end{cases}$$

Find the Fourier series expansion for f(x) in the interval $(-\pi,\pi)$.

- 4. Prove the translation theorem for Z transform.
- 5. A factory manufactures light bulbs with a defect rate of 3%. If a random sample of 10 bulbs is tested, what is the probability that exactly 1 bulb is defective? Use the binomial distribution.
- 6. Solve the difference equation y[n] 0.5y[n-1] = x[n] using Z transforms, where x[n] is a given input sequence.

SECTION-C

- 7. Derive the Z transform of $x[n] = n^2 u[n]$, where u[n] is the unit step function, using the differentiation property, and evaluate X(z) at z = 1.
- 8. a) Solve the initial value problem y'' + 4y = 0, y(0) = 1, y'(0) = 0 using Laplace Transforms.
 - b) Using the convolution theorem for Fourier, find the convolution of $f(t) = e^{-t}u(t)$ and g(t) = u(t), where u(t) is the unit step function.
- 9. Given the following data points, fit a parabola using principle of least squares.

x	-l	0	1	2	3
y	1	0	1	4	9

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(ECE) (Sem.-3) ELECTRONIC DEVICES Subject Code : BTEC/301/18

M.Code: 76444

Date of Examination: 07-01-2025

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES : 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks

SECTION-B contains FIVE questions carrying FIVE marks each and students

have to attempt any FOUR questions.

SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- a) What is N-type and P-type semiconductor?
- b) Distinguish between majority and minority carriers.
- c) What is the atomic structure of germanium?
- d) Why is varactor diode?
- e) What is the difference between CB and CE configuration?
- What is LED?
- g) What are the uses of diodes?
- h) What do you mean by Avalanche breakdown?
- What are the applications of solar cell?
- Define dynamic resistance of a PN junction diode in forward biasing

- 2. Explain the construction and V-I characteristics of Zener Diode. What is Zener impedance?
- 3. Distinguish between Semiconductors, Conductors and Insulators?
- 4. What is construction process of Enhancement-type MOS?
- 5. What is the process of Chemical Vapour Deposition (CVD)?
- 6. Elaborate Poisson and continuity equation.

SECTION-C

- 7. Explain the working of an Emitter follower and show how it performs the function of impedance transformation.
- 8. Explain with diagram the construction and working of MOSFET.
- 9. Write short note on:
 - a) Schottky Diode
 - b) Varactor Diode

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech.(ECE) (Sem.-3)
NETWORK THEORY

Subject Code: BTEC-304-18

M.Code: 76447

Date of Examination: 08-01-2025

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a. What are poles and zeroes?
- b. What are Transmission parameters? Why these are called so?
- c. Find whether the polynomial $P(s) = s^2 + 2s + 5$ is Hurwitz or not?
- d. What are the properties for a polynomial to be Hurwitz?
- e. What is the difference between network synthesis and network analysis?
- f. A series RC circuit has $R=10\Omega$, $C=1\mu F$. Find i(t) when V=10V.
- g. Find f(t) if F(s) = $\frac{2}{s(s^2+1)}$
- h. Convert to an equivalent star network.

- i. What do you mean by active and reactive power?
- j. What is the difference between balanced and unbalanced 3-phase

2. What are positive real functions? Discuss the necessary and sufficient functions. Check if the function is PR?

$$z(s) = \frac{(s^3 + 7s^2 + 14s + 7)}{(s^3 + 6s^2 + 11s + 1)}$$

3. Find the value of ZL so that maximum power is transferred to it.

4. Obtain the impedance parameters of the following network:

6. In the given Fig, Switch S is open and steady state has been reached. S is closed at t=0. Find current through inductor, i_L(t).

SECTION-C

- 7. If an m-derived high pass filter has design impedance of 500Ω and cut off frequency of 3.5 KHz and infinite attenuation at 2.6 KHz, design the filter.
- 8. Realize the following function using all four canonical forms:

$$z(s) = \frac{(s+2)(s+4)}{s(s+3)}$$

9. Determine Thevenin's equivalent circuit and find IL. Verify answer using Norton's theorem.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(ECE/ETE) (Sem.-3) **ELECTROMAGNETIC WAVES**

Subject Code: BTEC-303-18

M.Code: 76446

Date of Examination: 14-01-2025

Time: 3 Hrs.

Max. Marks: 60

INSTRUCTIONS TO CANDIDATES :

SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks

SECTION-B contains FIVE questions carrying FIVE marks each and students

have to attempt any FOUR questions.

SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- a) Define the concept of distributed elements in transmission lines.
- b) Write the voltage equation for a transmission line.
- c) What is the difference between lossless and low-loss transmission lines?
- d) Describe the purpose of a Smith chart in transmission line calculations.
- e) State Gauss's law and its significance in electromagnetics.
- Explain the role of surface charge in Maxwell's equations.
- g) What is the Poynting vector and what does it represent?
- h) Define wave polarization.
- Define Electromagnetic Waves.
- j) Describe Poincare's sphere.

- 2. Explain impedance matching using transmission lines and its applications.
- 3. Derive Maxwell's equation for Ampere's Circuital law and discuss its implications.
- 4. Describe the concept of phase velocity and power flow in a uniform plane wave.
- 5. Explain the phenomenon of total internal reflection and provide an example of its application.
- 6. Discuss the function and importance of rectangular waveguides in electromagnetic wave propagation.

SECTION-C

- 7. Analyze the equations of voltage and current on a transmission line with the help of distributed parameters and discuss the role of standing waves in impedance transformation.
- 8. Using Maxwell's equations, derive the boundary conditions at a media interface and explain their significance in electromagnetic theory.
- 9. Explain the process of wave propagation in a conducting medium, discussing factors that affect phase velocity, power flow, and how the Poynting vector can be used to analyze energy distribution?

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech.(ECE) (Sem.-3) DIGITAL SYSTEM DESIGN

Subject Code: BTEC-302-18

M.Code: 76445

Date of Examination:24-12-2024

Time: 3 Hrs.

Max. Marks: 60

SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks INSTRUCTIONS TO CANDIDATES :

SECTION-B contains FIVE questions carrying FIVE marks each and students

SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- a) Implement 2:4 decoder using 1:2 decoders.
- b) Design Half adder circuit.
- c) Minimize the following expression

$$AB'C + A'BCD' + ABC'D'+AB + C$$

- d) Write De-Morgan's theorem.
- e) Discuss dataflow style of modelling in VHDL.
- f) Convert (11110)_{Gray} to Binary code.
- g) Discuss PAL and PLA circuits.
- h) Why priority encoders are preferred?
- i) Discuss the working of BCD adder circuit.
- j) Convert (1000 1001)_{BCD} to Excess-3 code.

- 2. What is shift register and discuss its applications?
- 3. What is Race Around condition, how it can be removed?
- 4. Write short note on TTL logic family.
- 5. Write a program in VHDL for designing full adder circuit.
- 6. Implement the following function using Multiplexer

$$F(A,B,C,D) = \Sigma m (0, 1, 2, 3, 6, 7, 8, 12)$$

SECTION-C

- 7. Minimize using K Map technique $F(w,x,y,z) = \sum m (0,2,3,6,7,8,12,13,14) + d(4,11,15)$
- 8. Describe various characteristics of A/D convertor. Also explain the working of successive approximation A/D convertor.
 9. Design 2bit magnitude
- 9. Design 2bit magnitude comparator circuit.